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Abstract. The Casimir energy of a solid ball placed in an infinite medium is calculated
by a direct frequency summation using the contour integration. It is assumed that the
permittivity and permeability of the ball and medium satisfy the conditionε1µ1 = ε2µ2. After
deriving the general expression for the Casimir energy, a compact ball is considered when
ξ2 = (ε1 − ε2)

2/(ε1 + ε2)
2 � 1. Calculations are carried out which are of the first order in

ξ2 and take account of the fifth-order terms in the uniform asymptotic expansion of the Bessel
functions involved. The implication of the results to attempt to explain sonoluminescence via
the Casimir effect is briefly discussed.

1. Introduction

Casimir energy, determined by the first quantum correction to the ground state of a quantum
field system with allowance for nontrivial boundary conditions, proves to be essential in
many problems of elementary particle theory, in quantum cosmology, and in the physics of
condensed matter. However, up to now there has been no universal method for calculating
the Casimir effect for arbitrary boundary conditions. It has been done only for simple
field configurations of high symmetry: the gap between two plates, sphere, cylinder, wedge
and so on. The curvature of the boundary and accounting for the dielectric and magnetic
properties of the medium lead to considerable complications. While the attractive force
between two uncharged metal plates was calculated by Casimir as far back as 1948 [1], the
same effect for a perfectly conducting spherical shell in a vacuum was computed by Boyer
only in 1968 [2] (see also the later calculations [3–6]). For an infinitely thin spherical shell
separating media with arbitrary dielectric (ε1, ε2) and magnetic (µ1, µ2) characteristics, the
problem is as yet unsolved [7–10]. The main difficulty is the lack of a consistent method
for removing the divergences. Besides an attempt to revive the quasiclassical model of an
extended electron proposed by Casimir [11], interest in this problem has also been raised
by investigations of bag models in hadron physics [12–14] and the recent search for a
mechanism of sonoluminescence [15].

In this paper we calculate the Casimir energy of a solid ball by making use of the
direct summation of the eigenfrequencies of a vacuum electromagnetic field by contour
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integration [16, 17]. A definite advantage of this method, compared with the Green’s
function technique employed in [7–9, 18], is its simplicity and visualization. We consider
a compact ball placed in an infinite medium whenε1µ1 = ε2µ2. This condition enables
one to treat the divergencies analogously to the case of a perfectly conducting spherical
shell [6]. Upon deriving the general expression for Casimir energy, we address ourselves to
the case of a compact ball withξ2� 1, ξ = (ε1− ε2)/(ε1+ ε2). The calculations here are
of the first order inξ2 and take account of the fifth-order terms in the uniform asymptotic
expansion of the Bessel functions involved. In this way we attain some generalization and
refinement of the results obtained for this problem previously [18].

The layout of this paper is as follows. In section 2 we derive a general expression
for the Casimir energy of a solid ball in an infinite surrounding under the condition
ε1µ1 = ε2µ2 = c−2, wherec is an arbitrary constant not necessarily equal to one (it is
the light velocity in the medium), the mode-by-mode summation of eigenfrequencies being
used. In section 3 the Casimir energy of a compact ball is calculated whenξ2 � 1. The
implication of the obtained result to the Schwinger attempt to explain the sonoluminescence
via the Casimir effect is also considered. In section 4 the results of the paper are briefly
discussed. Dispersive effects are ignored in our paper.

2. Casimir energy of a solid ball under the conditionε1µ1 = ε2µ2

Let us consider the Casimir theory of a solid ball of radiusa, consisting of a material which
is characterized by permittivityε1 and permeabilityµ1. We assume that the ball is placed
in an infinite medium with permittivityε2 and permeabilityµ2. We also suppose that the
conductivity of the ball material and its surroundings is equal to zero.

In our consideration the main part will be played by equations determining the
eigenfrequenciesω of the electromagnetic oscillations for this configuration [19]. It is
convenient to rewrite these equations in terms of the Riccati–Bessel functions

s̃l(x) = xjl(x) ẽl(x) = xh(1)l (x) (2.1)

where jl(x) =
√
π/2xJl+1/2(x) is the spherical Bessel function andh(1)l (x) =√

π/2xH(1)
l+1/2(x) is the spherical Hankel function of the first kind. For the TE-modes

the frequency equation reads

1TE
l (aω) ≡

√
ε1µ2s̃

′
l (k1a)ẽl(k2a)−√ε2µ1s̃l(k1a)ẽ

′
l (k2a) = 0 (2.2)

whereki = √εiµiω, i = 1, 2, are the wavenumbers inside and outside the ball, respectively;
the primes represent the differentiation with respect to the argument (k1a or k2a) of the
corresponding Riccati–Bessel function. The frequencies of the TM-modes are determined
by

1TM
l (aω) ≡ √ε2µ1s̃

′
l (k1a)ẽl(k2a)−√ε1µ2s̃l(k1a)ẽ

′
l (k2a) = 0. (2.3)

The orbital quantum numberl in (2.2) and (2.3) assumes the values 1, 2, . . . . Under mutual
changeεi ↔ µi , i = 1, 2, frequency equations (2.2) and (2.3) transform into each other.

It is worth noting that the frequencies of the electromagnetic oscillations determined by
equations (2.2) and (2.3) are the same inside and outside the ball. This is in contrast to the
case of a perfectly conducting spherical shell in a vacuum [6], where eigenfrequencies inside
and outside the shell are determined by different equations [19]. The physical reason for
this is that photons do not perform work when passing through the boundary atr = a. Here
we disregard the variation of the velocity of light due to the higher radiative corrections to
the vacuum energy (the Scharnhorst effect [20]) because they are vanishingly small.
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As usual we define the Casimir energy by the formula

E = 1
2

∑
p

(ωp − ω̄p) (2.4)

whereωp are the roots of equations (2.2) and (2.3) andω̄p are the same roots under condition
a→∞. Herep is a collective index that stands for a complete set of indices for the roots
of equations (2.2) and (2.3). The sum in (2.4) obviously diverges, and it will require
appropriate regularizations (see below).

Denoting the roots of equations (2.2) and (2.3) byω(1)nl andω(2)nl respectively, we can
cast equation (2.4) in the explicit form

E = 1
2

2∑
α=1

∞∑
l=1

l∑
m=−l

∞∑
n=1

(ω
(α)
nl − ω̄(α)nl ) =

∞∑
l=1

El (2.5)

where the notation

El = (l + 1
2)

1−s
2∑
α=1

∞∑
n=1

(ω
(α)
nl − ω̄(α)nl ) (2.6)

is introduced. Here we have taken into account that the eigenfrequenciesω
(α)
nl do not depend

on the azimuthal quantum numberm. The parameters is introduced to regularize the sum
over l. In the intermediate calculations we treat this parameter as large enough to make the
sum overl convergent. The regularization will be removed at the end of our consideration
by putting s = 0. For partial energiesEl we use representation in terms of the contour
integral provided by the Cauchy theorem [21]

El = (l + 1/2)1−s

2π i

∮
C

dz z
d

dz
ln
1TE
l (az)1

TM
l (az)

1TE
l (∞)1TM

l (∞) (2.7)

where the contourC surrounds, counterclockwise, the roots of the frequency equations in
the right half-plane. Location of the roots of equations (2.2) and (2.3) enables one to deform
the contourC into a segment of the imaginary axis(−i3, i3) and a semicircle of radius3
in the right half-plane. At a given value of3 a finite number of the roots of the frequency
equations is taken into account. Thus3 plays the role of a regularization parameter for
the initial sum overn in equation (2.6) which should be subsequently taken to infinity.
In this limit the contribution of the semicircle of radius3 into integral (2.7) vanishes.
From physical considerations it is clear that multiplierz in (2.7) is understood to be the
limµ→0

√
z2+ µ2, whereµ is the photon mass. Therefore in the integral along the segment

(−i3, i3) we can integrate once by parts, the nonintegral terms being cancelled. As a
result, after the subtraction according to (2.4) and removal of the regularization(3→∞)
one obtains

El =
(l + 1

2)
1−s

πa

∫ ∞
0

dy ln
1TE
l (iy)1

TM
l (iy)

1TE
l (i∞)1TM

l (i∞) . (2.8)

Now we need the modified Riccati–Bessel functions

sl(x) =
√
πx

2
Iν(x) el(x) =

√
2x

π
Kν(x) ν = l + 1

2 (2.9)

where Iν(x) andKν(x) are the modified Bessel functions [22]. With allowance for the
asymptotics ofsl(x) andel(x) at x →∞

sl(x) ' 1
2ex (2.10)

el(x) ' e−x (2.11)
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equation (2.8) can be rewritten as

El =
(l +′ 1

2)
1−s

πa

∫ ∞
0

dy ln

{
4e−2(q1−q2)

(
√
ε1µ2+√ε2µ1)2

[√
ε1ε2µ1µ2((s

′
l (q1)el(q2))

2

+ (sl(q1)e
′
l (q2))

2− (ε1µ2+ ε2µ1)sl(q1)s
′
l (q1)el(q2)e

′
l (q2)

] }
(2.12)

whereqi = √εiµiy, i = 1, 2. We shall use this general equation in the next section but
here we address the special case when the condition

ε1µ1 = ε2µ2 = c−2 (2.13)

is fulfilled. Here c is an arbitrary positive constant (the light velocity in the medium).
Physical implications of this condition atc = 1 can be found in [23]. Now equation (2.12)
assumes the form

El =
c(l + 1

2)
1−s

πa

∫ ∞
0

dy ln

{
4

ε + ε−1+ 2
[(s ′l (y)el(y))

2+ (sl(y)e′l (y))2

−(ε + ε−1)sl(y)s
′
l (y)el(y)e

′
l (y)]

}
(2.14)

where ε = ε1/ε2. The argument of the logarithm in (2.14) can be transformed, if the
following two equalities for the functionssl(y) andel(y)

s ′l (y)el(y)− sl(y)e′l (y) = 1 (2.15)

s ′l (y)el(y)+ sl(y)e′l (y) = (sl(y)el(y))′ (2.16)

are taken into account. It gives

El =
c(l + 1

2)
1−s

πa

∫ ∞
0

dy ln{1− ξ2[(sl(y)el(y))
′]2} (2.17)

where

ξ = µ2− µ1

µ2+ µ1
= ε1− ε2

ε1+ ε2
εiµi = c−2 i = 1, 2. (2.18)

Thus, for a ball with a vacuum on the outside,ξ = (1− µ)/(1+ µ) = (ε − 1)/(ε + 1)
and c = 1. It is important to note that under the condition (2.13) the general structure
of the divergences in the considered problem proves to be the same as in the case of
a perfectly conducting spherical shell [6]. The expression (2.17) agrees with the results
obtained in [8, 24], if one performs a partial integration of the expression forE given in these
references and puts the cut-off parameterδ equal to zero. Ifξ2 = 1 then equation (2.17) turns
into the analogous expression for the perfectly conducting spherical shell in a vacuum [3, 6].

We remark that in a previous paper [18] an expression for the Casimir energy was
calculated that is seemingly in conflict with equation (2.17). Namely, equation (2.42) in
that paper corresponds to the following expression forEl , assumingµ1 = µ,µ2 = 1 as
above, and putting the cut-off parameter equal to zero:

El = − (µ− 1)2

πa
ν

∫ ∞
0

dx
sls
′
l ele
′
l

DlD̃l

x
d

dx
ln(1− λ2

l ). (2.19)

Hereλl = (slel)′, andDl, D̃l are defined by

Dl(x) = µsl(x)e′l (x)− s ′l (x)el(x) (2.20)

D̃l(x) = µs ′l (x)el(x)− sl(x)e′l (x). (2.21)
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It turns out, however, that these two equations (2.17) and (2.19) are in agreement. To show
the equivalence is not quite trivial, but follows after some algebra taking into account the
derivatives of the logarithms and the Wronskian (2.15). We omit the details here. The
expression (2.17) is the most convenient form to work with, and we use it in the following
where we turn to the special case of a dilute medium satisfying the conditionεµ = 1. We
emphasize that the expression (2.17) is general, making no restriction at all on the magnitude
of µ1/µ2.

3. Casimir energy of a compact ball for|ξ| � 1

Now we address ourselves to consideration of the Casimir energy of a compact ball when

|ξ | � 1. (3.1)

That means, to the lowest order inξ ,

ln(1− ξ2λ2
l ) ' −ξ2λ2

l (3.2)

which reflects a general property of all Casimir calculations in dilute media: the lowest
order correction for all physical quantities is proportional to thesquareof the susceptibility
(electric or magnetic). We shall henceforth work only to the second order inξ . From (2.17)
and (3.2) we then get for the Casimir energy

E = −cξ
2

πa

∞∑
l=1

ν1−s
∫ ∞

0
dx λ2

l (x). (3.3)

To perform the summation with respect tol one should know the behaviour of (3.3)
when l → ∞. We now invoke the following useful expansion atν → ∞, which was
worked out by one of us some time ago [25]

λl(x) = (sl(x)el(x))′ = t3

2ν

[
1− 1

8ν2
(2− 27t2+ 60t4− 35t6)

− 1

128ν4
(108t2− 3615t4+ 21 420t6− 47 250t8

+44 352t10− 15 015t12)+O(1/ν6)

]
. (3.4)

Here,t (z) = (1+ z2)−1/2, z = x/ν. This expression is based upon the uniform with respect
to z asymptotic expansions (UAE) for the modified Bessel functions [22] atl→∞. From
(3.4) we calculate

λ2
l (x) =

t6

4ν2

[
1− 1

4ν2
(2− 27t2+ 60t4− 35t6)+ 1

16ν4
(1− 54t2+ 1146t4− 6200t6

+13185t8− 12 138t10+ 4060t12)+O(1/ν6)

]
(3.5)

which can now be inserted into equation (3.3). From the integral representation of the beta
function [22]B(q, p) = 0(q)0(p)/0(q + p) we derive the formula

∫ ∞
0
tp(z) dz =

√
π

2

0
(
p−1

2

)
0
(
p

2

) (3.6)
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which is useful in the present context. After some calculation we obtain

E = −3ξ2c

64a

[ ∞∑
l=1

ν−s − 9

128

∞∑
l=1

ν−2−s + 423

16 384

∞∑
l=1

ν−4−s +O
(

1

ν6+s

)]
. (3.7)

For s > 1 the sums in (3.7) are expressed in terms of the Riemann zeta function. This
technique [26] turns out to be most useful in all Casimir problems involving nondispersive
media. In practical calculations the only formula needed is

∞∑
l=0

ν−s = (2s − 1)ζ(s) (3.8)

from which it follows that

E = −3ξ2c

64a

{
[(2s − 1)ζ(s)− 2s ] − 9

128
[(2s+2− 1)ζ(s + 2)− 2s+2]

+ 423

16 384
[(2s+4− 1)ζ(s + 4)− 2s+4] +O

(
1

νs+6

)}
. (3.9)

To remove the regularization one should put in this expressions = 0. Finally for the
Casimir energy of a ball we get, omitting the remainder in (3.9),

E = 3ξ2

64a

[
1+ 9

128

(
1

2
π2− 4

)
− 423

16 384

(
1

6
π4− 16

)]
. (3.10)

The energy is positive, corresponding to arepulsivesurface force. Remember, though, that
we are working here with thenondispersivetheory only.

The structure of the three different terms in (3.10) is the following. The first term
stems from the order 1/ν in the uniform asymptotic expansion for the Bessel functions.
Numerically, the three terms between square brackets in (3.10) are [1+0.065 73−0.006 10].
Thus the second term, stemming from the order 1/ν3 in the UAE, describes a repulsive
correction of about 6.6%. Finally the third term, stemming from the order 1/ν5 in the UAE,
describes a 0.6% attractive correction. We have thus improved the calculations in [18, 25]
by four orders in magnitude. The next correction, not included here, is of order 1/ν7 in the
UAE.

In conclusion we address the consideration of a dielectric ball, whenµ1 = µ2 = 1
and its permittivity and that of the surrounding differ slightly (ε1 + ε2 = 2ε, ε1 − ε2 =
24ε, |4ε|/ε � 1). Under these conditions one can simplify the general formula (2.12)
putting thereq1 = q2 in the arguments of the Bessel functions and of the exponential. After
making use of equations (2.15) and (2.16) we again arrive at (2.17), where now

ξ2 =
(√

ε1−√ε2√
ε1+√ε2

)2

' 1

4

(4ε
ε

)2

and c = 1√
ε
.

After the summation overl using the zeta function technique we arrive at

E ' 3ξ2/(64a). (3.11)

This formula gives the Casimir energy of a nonmagnetic dilute dielectric ball or a spherical
cavity in an infinite surrounding. Take, as an example,|ξ | = 0.1, a = 4× 10−4 cm. Then
E ' 2×10−5 eV. This is markedly smaller than the amount of energy (∼10 MeV) emitted in
a sonoluminescent flash. Furthermore, the Casimir energy (3.11), being positive, increases
when the radius of the ball decreases. The latter eliminates completely the possibility
of explaining, via the Casimir effect, sonoluminescence for bubbles in a liquid. As
known [27], emission of light takes place at the end of the bubble collapse. Recent important
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experimental studies have measured the duration of the sonoluminescence flash [28]. In view
of all this it is difficult to imagine that the Casimir effect, at least in its nondispersive version,
should be important for the sonoluminescence phenomenon. Comparing our result for the
Casimir energy of a dilute dielectric ball (3.11) with other calculations of this energy we see
that it is close to equations (3.17) and (3.26) in [8] differing only by the factor 9π/46' 0.6.
This is important for justification of our consideration because equations (3.17) and (3.26)
in [9] have been derived in the framework of an absolutely different but physically clear
approach—by a direct summation of the van der Waals forces. Our result (3.11) differs by
the factor− 3

4 from equation (7.5) in [8] and by the dependence on1ε from the calculation
in [32].

4. Conclusion

The method used in this paper for calculating the Casimir energyE by means of the
contour integral (2.7) has a rather long history (beginning essentially with Boyer [2]) and
proves to be very convenient and effective. As known, there are in principle at least two
different methods for calculatingE: one can follow a local approach, implying use of
the Green’s function to find the energy density (or the surface force density), or one can
sum the eigenfrequencies directly. Equation (2.7) means that we have adopted the latter
method here. The Cauchy integral formula turns out to be the most useful in other contexts
also, such as in the calculation of the Casimir energy for a piece-wise uniform relativistic
string [29]. A survey of this subject can be found in [30]. The great advantage of the
method is that the multiplicity of zeros in the dispersion function is automatically taken
care of, i.e. one does not have to plug in the degeneracy in the formalism by hand.

A remarkable feature of the approach in hand is that the ultimate formula for the
Casimir energy has the form of the spectral representation, i.e. of an integral with respect
to frequency between the limits(0,∞) of a smooth function, spectral density. Evidently,
for physical applications one needs to know the frequency range which gives the main
contribution into the spectral density. An example of this representation for the partial
energiesEl is equation (2.17), where the substitutiony = ωa should be made. As shown
above, the partial energiesEl decrease rapidly asl increases. Therefore the most interesting
are the first few values ofl. As one might expect, the spectral density is different from
zero whenωa ' 1. Keeping in mind the search for the origin of the sonoluminescence we
put [8, 27]a = 4×10−4 cm. Then the wavelength of the photon in question turns out to be
25.0× 10−4 cm, i.e. this radiation belongs in the infrared region, while in experiments on
sonoluminescence blue light is observed [27]. This fact also argues against the possibility
of explaining the sonoluminescence by the Casimir effect.

It is worth noting that the spectral distribution of the Casimir energy is hardly discussed
in the literature whereas the space density of this energy has been investigated in detail (see,
for example [18]). From the physical point of view the space density and spectral density
of energy in this problem should be treated on the same footing. One should remember
here the treatment of the Casimir effect as a manifestation of the fluctuations of the vacuum
fields [31], these fluctuations occurring in space and time simultaneously.

It should be emphasized that in this paper we have neglected the dispersion effects when
calculating the Casimir energy. The importance of this point has been demonstrated in [32].
As for the elucidation of the sonoluminescence origin, we have to stress once more that in
our consideration we have contented ourselves with the static Casimir effect only.
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